In a compact comment published in Nature Communications, Max Lemme and colleagues outline the most promising fields of applications of two-dimensional (2D) materials, as well as the challenges that still need to be solved to see the appearance of high-tech products enabled by 2D-materials. [read more »]
Two-dimensional (2D) materials have a huge potential for providing devices with much smaller size and extended functionalities with respect to what can be achieved with today’s silicon technologies. But to exploit this potential we must be able to integrate 2D materials into semiconductor manufacturing lines – a notoriously difficult step. A team of researchers from Sweden and Germany now reports a new method to make this work.
[read more »]
Bridging the gap between lab-scale manufacturing and large volume production of electronic devices based on two-dimensional materials – this is the mission of the 2D Experimental Pilot Line, a €20 million project funded by the European Commission within the H2020 program. Its kick-off meeting is planned on October 8, 2020.
[read more »]
Researchers from TU Wien, AMO GmbH, University of Pisa and Wuppertal University have realized the first operational amplifier based on the two-dimensional semiconductor MoS2, reaching a key milestone towards the vision of a flexible electronics all based on two dimensional materials. This result has just appeared in the journal Nature Electronics.
[read more »]
Max Lemme and co-workers have recently published a review article on nanoelectromechanical (NEMS) sensors based on suspended two-dimensional (2D) materials in the journal RESEARCH, an open-access multidisciplinary journal launched in 2018 as the first journal in the Science Partner Journal (SPJ) program. The paper is an invited contribution to a special issue on “Progress and challenges in emerging 2D nanomaterials – preparation, processing, and device integration”, and has the purpose of contributing to the development of the field of 2D materials for sensor applications and to their integration with conventional semiconductor technology. [read more »]