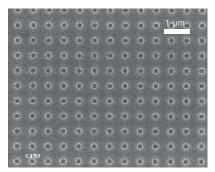

Large Area Nanogratings

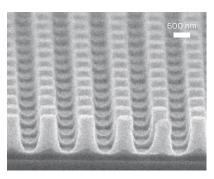
1D, rectangular and hexagonal

Description

AMO offers gratings fabricated by inhouse interference lithography (IL). The IL technology allows producing large, coherent and periodic gratings with nearly constant pitch. Pattern transfer and further processing can be carried out according to customer requirements. Substrates up to 6 inch and any rectangular within.


Linear Grating

Applications


- ► Master for Imprint Templates
- ► Microoptics
- ► NanoBio Technology
- ▶ Sensor technology

All grating dimensions are specified and controlled during and after processing. Line width maps, LER characterisation and defect inspection are available on request.

Holes Pattern

Pillars Pattern

Specification

Contact
Dipl.-Ing.
Michael Möller
moeller@amo.de

AMO GmbH

Gesellschaft für Angewandte Mikro- und Optoelektronik mbH Otto-Blumenthal-Straße 25 52074 Aachen Germany

Phone +49 241 88 67-125 www.amo.de

Substrate material Silicon or fused silica Substrate thickness typical 500 µm to 650 µm Substrate size up to 6 inch and any rectangular within Grating pitch 300 nm to 2.500 nm Etch depth 90 nm to 2.500 nm Line width 40 nm to 2.500 nm Acting grating area up to 400 mm in diameter

Some specifications are matter of negotiation. For further details please contact us.

Nanophotonics

Masters and Stamps for Nanoimprint Lithography

AMO offers masters fabricated using various micro- and nanolithography techniques in combination with anisotropic etching.

Large Area Periodic Nanostructures

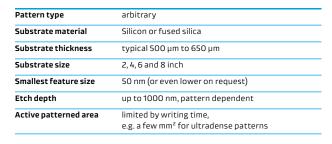
Our interference-lithography (IL) technology allows producing large, spatial coherent and periodic gratings with constant pitch. Pattern transfer and further processing can be carried out according to customer requirements to achieve high aspect ratio gratings with vertical sidewalls.

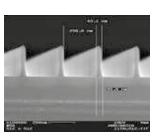
Pattern type	1D, rectangular, hexagonal	
Substrate material	Silicon or fused silica	
Substrate thickness	typical 500 μm to 650 μm	
Substrate size	2, 4, 6 and 8 inch	
Grating pitch	180 nm to 2500 nm	
Etch depth	up to 2500 nm	
Line width	40 nm to 1500 nm	
Active grating	area up to 90% of the substrate size	

Some specifications are matter of negotiation. For further details please contact us.

All grating dimensions are specified and controlled during and after processing. Line-width maps, line-edge roughness characterisation and defect inspection are available on request.

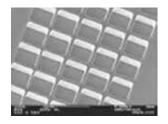
Using our e-beam lithography (EBL), we can realize arbitrary nanoscale patterns. Our system provides resolution down to a few ten nanometers. The definition of large active-areas is limited by the writing time, which is pattern dependent. Pattern transfer into silicon or other material is possible. Quotes can be provided ased on an electronic design, preferable in GDS format.


Contact


Dipl.-Ing. Herbert Kleinjans services@amo.de

AMO GmbH

Gesellschaft für Angewandte Mikro- und Optoelektronik mbH Otto-Blumenthal-Straße 25 52074 Aachen Germany


Phone +49 241 88 67-125 www.amo.de

Arbitrary Microstructures

Masters can easily be produced using photolithography. Here micrometer features can be defined and etched up to 10 µm into the substrate. This technique requires a photomask that can be designed to satisfy the customer's needs or chosen among our masks on stock.

Mask Aligner

Pattern type	arbitrary
Substrate material	Silicon or fused silica
Substrate thickness	typical 500 μm to 650 μm
Substrate size	up to 8 inch and any size within
Smallest feature size	2 μm
Etch depth	up to 10 μm
Active patterned area	full substrate

i-line Stepper

Pattern type	Arbitrary field size up to 20x20 mm²
Substrate material	Silicon or fused silica
Substrate thickness	typical 500 μm to 650 μm
Substrate size	6 inch only
Smallest feature size	0,5 µm
Etch depth	up to 5 μm
Active patterned area	full substrate

Advanced masters using mixed technology

E-beam and photolithography can be combined on request to realize particularly complex masters.

- ▶ Mix-Match between i-line and EBL lithography
- ▶ Multi-level-masters, for 3D applications

